
1

ICT286
Web and Mobile Computing

Topic 4
JavaScript Programming in

the Web Browser
Environment

2

Objectives
• Understand relationship between JavaScript core and its

execution environment.
• Understand what built-in properties are available from the

JavaScript web browser environment and how to access
them.

• Understand and be able to debug JavaScript code in web
browsers such as Chrome, Firefox and IE.

• Understand and be able to use HTML forms.
• Understand the relationship between Document object

and the HTML document in the in browser window.
• Understand Document Object Model (DOM) and be able

to access HTML elements using the form array, the
elements array, name attributes and id attributes.

3

Objectives
• Understand event-driven programming. Understand and

be able to use common events. Be able to define event
handlers and be able to register event handlers with the
relevant events in HTML elements.

• Be able to perform validations on form inputs using
JavaScript.

4

JavaScript Execution
Environment

• JavaScript defines a global object that contains the
language build-ins and host-specific properties and methods
are defined.

• This global object has different name in different host
environment.

• For Node.JS, the object reference of this global object is
global. We discussed JavaScript under Node.js in Topic 3.

• For a web browser, this global object is Window, and its
object reference is window.

• JavaScript has introduced a standard reference for the
global object: globalThis.

• In this topic, we will use JavaScript in the browser
environment.

5

JavaScript Execution
Environment

• The Window object represents the window in which the
browser displays the document that contains/references
the JavaScript code. This object contains the properties
and methods defined in JavaScript core, such as NaN,
parseInt, Object, Array, String, Math, RegExp,
JSON, as well as properties and methods for the browser
environment (document, navigator, location, etc).

• Properties and methods defined in Window are
automatically available everywhere in your scripts, with or
without the object reference. Eg,
console.log(window.parseInt(“3.14xradius”);

console.log(parseInt(“3.14xradius”);

6

JavaScript Execution
Environment

• The following are some of the properties inside Window
object representing the host environment:
– window - which references itself
– navigator - the browser
– screen - the computer screen
– location - the url of the current page
– history - browsing history
– alert, confirm, prompt methods
– setTimeout and setInterval methods
– and many more . . .

• All global variables and functions you declare are also part
of Window. However this feature exits for backward
compatibility. You should not reply on it.

7

JavaScript Execution
Environment

• One of the most important objects in Window is the
Document object. Its object reference is document.

• The Document object represents the HTML document
displayed in the current window. It consists of a tree of
objects, each representing one element in the HTML page.

• This tree of objects is known as the DOM tree for the HTML
page. It is created by parsing the HTML page.

• The DOM tree resides in the browser’s memory.
• By manipulating the DOM tree using DOM interface, we can

dynamically change the look and behavior of the web page.

8

Embedding JavaScript in
HTML

• There are a number of ways to embed JavaScript code in
HTML.

• Firstly, JavaScript code can be placed inside a <script>
element:

<script>
document.write("Hello, world!");

</script>

• JavaScript functions are usually placed inside the head
element in your HTML document.

9

Embedding JavaScript in
HTML

• The second method is to put your JavaScript code in a file
and include the url of the file in <script> element. Eg.

<script src="myscript.js"> </script>

• This is the preferred way of embedding JavaScript to
HTML.

• The JavaScript code doesn’t have to be stored on the
same server. Eg
<head>
<script src="https://ajax.aspnetcdn.com/aja
x/jQuery/jquery-3.3.1.min.js"></script>
</head>

10

Embedding JavaScript in
HTML

• The last method is by expressing it as an event handler
within an HTML tag (mostly form elements). Eg.

<input type="button"

name="Button1"

value="Open Sesame!"

onclick="window.open('mydoc.html',

'newWin')” />

11

Debugging JavaScript
in Web Browsers

• Most web browsers provide a console to support for code
debugging.
– Crome:

View=> Developer=>JavaScript Console
– Firefox:

Tools => Web Developer => Debugger
– Safari:

Develop => Show JavaScript Console
– IE:

Settings and more => Developer Tools
• You can display debugging messages and error

messages inside the console using console.log()
method. These messages are for the developer, not for the
user of the web application.

12

Some Window Methods
Method Description

open(url, name,
options)

Creates a new window with the URL of the
window set to url, the name set to name, and
the features set by the string options.

close() Closes this window.

focus() Gives the focus to this window.

blur() Takes the focus away from this window

print() Print the contents of this window.

13

Window Methods
(Dialog Boxes)

Method Description

alert(string) Display a dialog box with the given string and an
OK button. The method returns when the user
clicks the OK button.

confirm(string) Display a dialog box with the given string and an
OK and a Cancel button. The method returns
true if the user clicks OK, or false if the user
clicks Cancel.

prompt(prompt,
default)

Display a dialog box with the given string
prompt, a textbox containing string default and
an OK and Cancel button. Return the string the
user entered if the user clicks the OK button, or
null if the user clicks Cancel button.

The alert Method
• The alert method opens a dialog box with a message
• The output of the alert is not HTML, so use new lines rather

than

alert("The sum is:" + sum + "\n");

14

The confirm Method
• The confirm method displays a message provided as a

parameter. The dialog has two buttons: OK and Cancel
• If the user presses OK, true is returned by the method
• If the user presses Cancel, false is returned

var question =
confirm("Do you want to continue this download?");

15

The prompt Method
• This method displays its string argument in a dialog box

– A second argument provides a default content for the user entry area
• The dialog box has an area for the user to enter text
• The method returns a String with the text entered by the

user

name = prompt("What is your name?", "");

16

17

Some Window Properties
Property Description

status Set the message in the status bar of the current
window

name Get or set the name of the current window

document Object reference to obeject Document

closed A Boolean value that is set to true if the window is
closed and false if it is not.

location The URL of the web page currently displayed in the
window.

history A list of the URLs that have been stored in
window.location.

18

The Navigator Object
• The navigator object holds information about the

browser being used. The name navigator arose
because the first browser from Netscape was named
Navigator. This object refers to any browser that is
being used, not just Navigator.

• There are some methods for this object, but you will
mainly use its properties.

19

Some Navigator Properties
Property Description

appCodeName The code name of the browser, eg Mozilla.
appName The name of the browser, eg, Netscape
userAgent The value of the user-agent header sent

by the client to the server
appVersion The version of the browser.
product The browser engine, eg Gecko

platform The platform on which the browser is
running, eg, MacIntel.

onLine Is the browser online?

cookieEnabled is the cookie enabled in the browser?

The Document Object
• The document object represents the document being

displayed in the current browser window.
• It is the root of the DOM tree which is actually the internal

representation of the HTML document that the browser
displays.

• One of the useful methods from document object is
write and writeln.

• JavaScript program can access the HTML document
using the DOM interface via the document.

• More commonly we use JQuery to manipulate the DOM
tree. JQuery is a JavaScript library.

• We will cover the manipulation of DOM in the next topic.

20

Generate Output
• The standard output for JavaScript embedded in a

browser is the window displaying the page in which the
JavaScript is embedded.

• The write method of the document object writes its
arguments to the browser window.

• The output is interpreted as HTML by the browser.

• Therefore, if a line break is needed in the output, you
must insert
 into the output, as newline
characters will be ignored.

21

22

HTML Forms
• HTML forms are a way of getting input from the user,

which can then be processed by a back-end program.
There are three parts that are coded with forms:
1. The input screen. This is the part that the user sees, with

prompts, textboxes, buttons, etc. It is usually coded in HTML.
We will be examining these in this topic.

2. Form validation. This checks that the values the user has
entered are valid and complete, before sending the user input
to the back-end program. This is written in JavaScript, usually
as an event handler, which runs on the client machine in
response to an event. We will discuss event handling in this
topic.

3. Form processing. This is the back-end program that accepts
the user input and does something with it, for example sending
some information back to the user, or creates an order. This
can be coded in many different languages. We will be using
PHP which will be covered in Topic 7.

23

HTML Forms
• The <form> tag defines what is in the form.
• Only one attribute, action, is required for any form. This

attribute specified the url of the program to be executed
when the user clicks the Submit button of the form.

• When the Submit button is clicked, the form data are
encoded and sent to the server and the server-side script,
such as a PHP script, is executed and the execution result
is sent back to the client.

• If no action should be taken when the user clicks Submit
button, you should set action="".

• You can use name or id attribute to identify the form.

24

Form Elements
• Inside a form element, you may use the following

elements to define form components:
– The <input> element – it is used to create various components of

the form. The <input> element requires the attribute type.

– The type attribute of <input> element indicates the type of the <input> tag:
text, password, search, number, range, color, checkbox, radio, reset, submit,
button, time, date, week, month, datetime, datetime-local, email, tel, and url.

– It is important to use name attributes to identify the input element so that you can
access it from JavaScript and PHP.

– The <select> element – it creates a drop-down list allowing the
user to select one or several items from the list. Use <option>
element to define the list items.

– The <textarea> element – it allows the user to input multi-line
text. You must use rows and cols attributes to define the size of text
area.

25

Textboxes
• The most common element in a form is a textbox.

Textboxes are used by users to enter text, for
example their names.

• The textbox is coded using an <input> tag with
type=“text”.

• Example:

<form id="myForm" action="">
<input type="text"

name="UserName" id="UserName" />

</form>

26

Textboxes
• You can (optionally) give a textbox a default size

in characters, and/or a string that will be placed in
the textbox.

• The following example displays a textbox for 30
characters, with an initial text “Type your user
name here:” in the textbox. If you type more than
30 characters, the textbox will be scrolled:
<form id="myForm" action="">

<input type="text"
name="UserName" id="UserName" size="30"
value="Type your user name here:" />

</form>

27

Password Textboxes
• You can change a textbox so that when the user types in

it, asterisks (***) appear, but the actual input is preserved.
You have probably seen these used for passwords. You
do this by making the type attribute password.

• Example:

<form id="myForm" action="">
<input type="password"

name="Password" id="Password"
size="10" />

</form>

28

Text Around Textboxes
• You will probably want to put some prompts

around your textboxes, so that the user knows
what to type. This is done by using the label
element.

• Example 1: place the prompt and the form
element inside a label element:
<label> Name:

<input type="text" name="UserName" size="15" />
</label>

• Example 2: bind the prompt and the form element
with the for attribute:
<label for="UserName" > Name:</label>
<input type="text" id="UserName" size="15" />

29

Radio Buttons
• Radio buttons give the user an opportunity to

choose from a number of options. A user may only
chose one option from a group of radio buttons. In
order for radio buttons to work, you must give all
the buttons in a radio button group the same name.

• In the following example, note that the two input
elements share the same name:
<form id="myForm" action="">

<label> Female:
<input type="radio" name="Genders" />
</label>

<label> Male:
<input type="radio" name="Genders" />
</label>

</form>

30

Checkboxes
• Checkboxes are similar to radio buttons except

that they give the user an opportunity to choose
more than one option. In order for checkboxes to
work, you should give all the checkboxes in a
checkbox group the same name. Eg:

<form id="myForm" action="">
<p>

<label>Cat: <input type="checkbox" name="Animals"/> </label>
<label>Dog: <input type="checkbox" name="Animals"/> </label>
<label>Rat: <input type="checkbox" name="Animals"/> </label>
<label>Bird:<input type="checkbox" name="Animals"/> </label>

</p>
</form>

31

The Checked Attribute
• With radio button groups and checkbox groups, you can

make one button in the group appear checked by using the
checked attribute. Eg:

<form id="myForm" action="">
<p>
<label>Cat: <input type="checkbox" name="Animals"/>

</label>
<label>Dog: <input type="checkbox" name="Animals"

checked="checked"/> </label>
<label>Rat: <input type="checkbox" name="Animals"/>

</label>
<label>Bird:<input type="checkbox" name="Animals"/>

</label>
</p>

</form>

32

File Selection Boxes
• You may want to get the name (and path) of a file from

your web page. This is very simple to do. The
creation of the form element, browse button and
processing on the client side is taken care of by simply
setting the type to “file”. What happens to the file
needs to be taken care of by the back-end program.
Eg:

<input type="file" name="MyFileName" />

33

Drop-down List
• The <select> element is also known as drop-down list

and it allows you to place many choices in a small area.
This is especially useful when screen area is at a
premium.

• The user can select one or several items (use attribute
multiple="multiple") from the list.

• We create select boxes using the <select> and
<option> tags. Eg:
<form id="animal" action="">

<p>Choose your favourite animal:
<select name="sbAnimal">

<option>Cat</option>
<option>Dog</option>
<option>Rat</option>

</select>
</p>

</form>

34

Text Area
• The <textarea> element allows the user to input

text consisting of multiple lines.
• You use attributes rows and cols to define the box

size. The attribute rows specifies the number of lines
and cols specifies the number of characters.
<form id="feedback" action="">

<p>Type your feedback:
<textarea name="feedfback"

rows="3" cols="25">
(be brief)

</textarea>
</p>

</form>

35

Action Buttons
• You would be familiar with buttons in the real world and

on web pages. We use buttons to initiate or stop an
action. There are some buttons that have predefined
meaning, for example Reset and Submit. If you use
any of these buttons on your web pages, make sure
that you give them the same meaning as they normally
have.

36

Reset Button
• The Reset button is used to clear all the fields

in the form, and start all over again. If you
create an input of type reset, a reset button
will be created and all the processing taken
care of by the browser. Eg:

<input type="reset" name="ResetButton" />

37

Submit Button
• The Submit button is used to send the values

from the form to the back-end program. You
need to specify two things: the button and the
action to be taken (in the <form> tag). Eg:

<form id="BookOrder"
action="ProcessForm.php">
<input type="submit"

name="SubmitButton"
value="Submit Order" />

</form>

38

The Plain Button
• You will probably want to create buttons to

perform other actions. In this topic, we learn
how to create the button in the form and in the
next few topics we will see how to code the
required processing for the action you want to
achieve when clicking the button. Eg:

<input type="button"
name="HelpButton" value="Help" />

Access HTML Elements in
JavaScript

• Each element in the HTML document has a corresponding
object in the DOM tree.

• Objects can be addressed in several ways:
– forms (and elements array inside each forms array element)

defined in DOM Level 0
• Individual elements are specified by index
• The index may change when the form changes

– Using the name attributes for form and form elements
• Names are required on elements in a form that provides data to

the server
– Using getElementById with id attributes

• id attribute value must be unique for an element
39

Using forms Array
• The document object contains the form array.

Each form object contains an elements array
of form elements.

• Example: assume that a document has only one
form (hence index 0):
<form action = "">

<input type = "button" name = "pushMe">

</form>

This button element can be referenced as
document.forms[0].elements[0]

40

Using name Attributes
• If the element has a name attribute, the name can be

used to reference the element.
• To use this method, all ancestors of the element must

also have the name attribute.
• Example

<body>

.

<form name = "myForm" action = "">

<input type = "button" name = "pushMe">

</form>

</body>

• Referencing the input element:
document.myForm.pushMe

41

Using getElementById
• DOM Level 1 provides getElementById

method from document object.
• Using this method, the element must have a

unique id. Eg:
<form action = "">

<input type="button" id="turnItOn">

</form>

• The object reference for the above input
element is:

document.getElementById("turnItOn")

42

Using Id Directly
• In HTML5, you can access the DOM object for

an element with an ID using the ID directly in
JavaScript.

• Assuming the following element:
<input type="text" id="Greeting">

• In JavaScript, you can access the DOM object
using ID Greeting directly:
Greeting.value = "Type a message here";

43

Using the Arrays in CheckBoxes
and Radio Buttons

• Each checkbox and radio button group has an implicit array whose name
is the same as the name attribute of the group. This array is available in
the object for the form in which the check boxes or radio buttons are
defined. Eg,

<form id = "topGroup">
<input type="checkbox" name="toppings" value="olives" />

...

<input type="checkbox" name="toppings" value="tomatoes" />

</form>

• JavaScript:
var numChecked = 0;

var dom = document.getElementById("topGroup");

for i = 0; i < dom.toppings.length; i++)

if (dom.toppings[i].checked)

numChecked++;

44

Event-driven Programming
• Event-driven programming is a style of programming in

which pieces of code, called event handlers, are to be
activated when certain events occur

• Events represent activity in the environment including,
especially, user actions such as moving the mouse or
typing on the keyboard

• An event handler is a program fragment designed to
execute when a certain event occurs

• The web browser constantly monitors the events. When
an event, such as a mouse click, occurs on an HTML
element, the web browser automatically calls the
relevant event handler registered for that event in that
HTML element.

45

Events and Event Handling
• An event is a notification that something specific

has occurred, either with the browser or due to
an action of the browser user

• An event handler is a script that is automatically
executed in response to the occurrence of an
event

• The process of connecting an event handler to
an event is called registration

46

47

Events and Event Attributes

Event name (event
attribute)

What triggers It

click (onclick) The user clicks the mouse button on the object.
dbclick (ondblclick) The user double clicks the mouse button on the object.

focus (onfocus) The user moves to the object by clicking the object or
tabbing into it.

blur (onblur) The user moves off the object by clicking a different place,
or tabbing away from it.

mouseover
(onmouseover)

The user moves the mouse cursor onto the object.

load (onload) The browser finishes loading a window.
unload (onunload) The user exits the document.
change (onchange) The user alters the content of an object.

submit (onsubmit) The submit button in the form is pressed.

More information are available from Table 5.1 and Table 5.2 of the textbook
(pages 203 to 205)

Registration of Event
Handlers

• An event handler can be registered for an HTML
element in two ways. Assume SendOrder is a
Javascript function.

• Method 1: Assume the following form element:
<input type="button" value="Order Now"

name="orderButton" />

Define the event attribute onclick:
<input type="button" value="Order Now"

name="orderButton"

onclick="SendOrder();" />

48

Registration of Event
Handlers

• Method 2: assigning to a property of the DOM object for the element
using getElementById. With this method, the element must have
an id attribute:
<input type="button" value="Order Now"

name="orderButton" id="OrderButton" />

Assign the event handler reference to the event property:
document.getElementById("OrderButton").onclick =

SendOrder;

– Note that the function name (which acts as the reference to the function)
is assigned, ie, no parentheses.

• Writing SendOrder()would assign the return value of the function call as the handler
instead!

– The above JavaScript code must be executed after the form has been
parsed. We usually place the JavaScript code at the end of the HTML
code. 49

Focus and Blur Events
• Particular events are associated to certain

attributes
• The attribute for one kind of event may appear

on different tags allowing the program to react to
events affecting different components

• A text element gets focus in three ways:
1. When the user puts the mouse cursor over it and clicks the left

button
2. When the user tabs to the element
3. By executing the focus method

• Losing the focus is blurring

50

51

Form Validation
• Now we can pull together everything we have

learned about JavaScript to perform form
validation.

• Each of the form elements we considered in
HTML can be validated using JavaScript. For
example, to check if mandatory fields are
present/been checked, or that fields contain
valid values.

52

Form Validation
• Assume that we have a form called MyForm, containing three input

elements and one select element:
<form id="MyForm" action="">
<p><label>Type your name: <input type="text"

name="name" /> </label> </p>

<p><label>Female: <input type="radio" name="genders" value="F"/>
</label>

<label>Male: <input type="radio" name="genders" value="M"/>
</label> </p>

<p<label>Cat: <input type="checkbox" name="animals" value="cat"/>
</label>

<label>Dog: <input type="checkbox" name="animals" value="dog"/>
</label> </p>

<p><select name="colour">
<option> Red </option>
<option> Blue </option>
<option> Yellow </option>

</select> </p>
</form>

53

Form Validation
Using Form Name

• We can access each of these elements using the name
attribute. Eg:

Form:
<form name="MyForm" action="" >

<input type="text" name="name" />

...

</form>

JavaScript:
var name = document.MyForm.name.value;

54

Form Validation Using Ids
• Alternatively we can access each of these elements

using method getElementById:
Form:

<form action="">

<input type="text" id = "name" />

...

</form>

JavaScript:
var name = document.getElementById("name");

• Note the id must be unique in the document.

55

Form Validation – check
boxes

Form:
<form name="MyForm" action="" >

<p><label>Cat: <input type="checkbox" value="cat"

name="animals" /> </label>

<label>Dog: <input type="checkbox" value="dog"

name="animals" /> </label> </p>

</form>

JavaScript:
var animal;

var animals= document.MyForm.animals;

for (var i=0; i<animals.length; i++) {

if (animals[i].checked) {

animal = animals[i].value;

document.write("Animal ", animal, "is checked
");

}

}

56

Form Validation – radio
button

Form:
<form id="MyForm" action="">

<p><label>Female: <input type="radio" value="F"
name="genders" /> </label>

<label>Male: <input type="radio" value="M"
name="genders" /> </label></p>

</form>

JavaScript:
var genderSelected;
var genders = document.getElementById("MyForm").genders;
for (var i=0;i<genders.length; i++) {

if (genders[i].checked) {
genderSelected = genders[i].value;
break;

}
}

57

Form Validation – list
boxes

Form:
<form name="MyForm" action="">

<p><select name="colour" />
<option>Red </option>
<option>Blue </option>
<option>Yellow </option>

</select></p>
</form>

JavaScript:
var colour= document.MyForm.colour;
var index=colour.selectedIndex;
var option = colour.options[index];

document.write("Colour selected is ", option.text);

– selectedIndex contains the index of the selected item.

document.write
Revisited

• The behaviour of document.write (including
document.writeln) depends on whether the
existing HTML document is fully parsed:
– If the existing document is still being parsed, the output

from document.write will be inserted into the existing
document.

– However if the parsing of the existing document is
completed, the first call to document.write will triger a
call to document.open()which will clear the existing
document!

• This means that if you call document.write inside an event
handler, the existing document will be replaced by the output from
the document.write.

58

document.write
Revisited

• Compare the following two examples:
• Example 1

<!DOCTYPE html>

<html>

<body>

<p> The following is generated by Javascript. </p>

<script>

var red="<p style=\"color:red\">Javascript</p>";

var blue="<p style=\"color:blue\">Javascript</p>";

document.write (red);

document.write (blue);

</script>

</body>

</html>

59

document.write
Revisited (cont’d)

• Example 2
<!DOCTYPE html>

<html>

<body>

<script type="text/javascript">

var red="<p style=\"color:red\">Javascript</p>";

var blue="<p style=\"color:blue\">Javascript</p>";

</script>

<p> Click the button to execute a Javascript code. </p>

<button onclick="document.write(red);document.write(blue);" >

Click me to run Javascript

</button>

</body>

</html>

60

61

Readings
Textbook:

Sebesta: Ch 5
Sebesta: Ch 2.9

W3Schools:

http://www.w3schools.com/js/default.asp

Kindle book:
Mark Myers: A Smart Way to Learn JavaScript

